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Abstract

Default Correlation: An Analytical Result

Evaluating default correlations and the probabilities of multiple defaults is an important

task in credit analysis and risk management, but it has never been an easy one because

default correlations cannot be measured directly. This paper provides, for the �rst time, an

analytical formula for calculating default correlations based on a �rst-passage-time model

which can be easily implemented and conveniently used in a variety of �nancial applications.

The result of this paper also provides a theoretical justi�cation for many empirical results

found in the literature and increases our understanding of the important features of default

correlations.



Default Correlation and Risk Analysis: An Analytical Result

Evaluating correlations among �rms' defaults is critical to the proper measurement of a

wide variety of risks in �nancial markets. For example, the risks of bond portfolios, letters

of credit, and credit default swaps are all functions of default correlations.

Currently, default correlations can be estimated in one of three ways. First, given two

�rms' asset values, their variance/covariance matrix, and their liability structures, there is

an analytical solution under the assumption of Merton (1974) that default can only occur at

a single point in time. This extremely restrictive assumption is relaxed in �rst-passage-time

models of default risk, but to date, no analytical solution exists for default correlations in

such models. Thus the second method is a Monte Carlo simulation of a speci�ed model of

default risk. Besides being extremely time consuming, this method provides only limited

insight into the comparative statics of default correlations. The third method uses historical

default data to estimate default correlations, an approach that cannot capture any �rm-

speci�c information. More importantly, because of the lack of reliable time series data,

historical statistics are generally very inaccurate.

This paper provides an analytical solution to the default correlation based on a �rst-

passage-time model. In comparison with other existing approaches, the solution is not only

theoretically rigorous, but also practically implementable. Given the �rms' asset values,

their variance/covariance matrix, and the structure of �rms' liabilities, the solution can be

easily implemented in practice. These inputs can be estimated from �rms' balance sheets

and stock prices.

The rest of the paper is organized as follows: Section 1 de�nes the economy and presents

a closed-form solution to the default correlation. Section 2 provides a couple of approaches

to estimate the parameter values needed in the theoretical default correlation model so that

the model can be readily used in practice. Section 3 uses the model to explain the observed

empirical behavior of default correlations. Section 4 provides a brief comparison of our

1



�rst-passage model with a Merton-style model. Section 5 concludes.

1 The Model

This section provides a basic theoretical framework to discuss default correlations. We

consider the default correlation between two arbitrary �rms, �rm 1 and �rm 2.

Assumption 1: Let V1 and V2 denote the total asset values of �rm 1 and �rm 2. The

dynamics of V1 and V2 are given by the following vector stochastic process

2
64 d ln(V1)

d ln(V2)

3
75 =

2
64 �1

�2

3
75 dt+


2
64 dz1

dz2

3
75 ; (1)

where

�1 and �2 are constant drift terms,

z1 and z2 are two independent standard Brownian motions, and


 =

2
64 s11 s12

s21 s22

3
75

is a constant 2� 2 matrix such that


 �
0
=

2
64 �21 ��1�2

��1�2 �22

3
75 :

The coe�cient � re
ects the correlation between the movements in the asset values of

the two �rms, which plays a critical role in determining the default correlation between the

�rms.

Assumption 2: The default of a �rm is triggered by the decline in its value. For each

�rm i, there exist two positive constants Ki and �i such that the �rm continues to operate

and meets its contractual obligations as long as Vi(t) > e�itKi. However, if its value Vi(t)

falls to the threshold level e�itKi, it defaults on all of its obligations immediately and some

form of corporate restructuring takes place.
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This assumption follows Black and Cox (1976), Longsta� and Schwartz (1995), and

Zhou (1996). By this assumption, determining the default event of a �rm is equivalent

to �nding the �rst passage time of the �rm's value to the trigger level. To simplify the

mathematics, we assume that �i = �i in this paper.
1

Denote �i := mint�0ftje��itVi;t � Kig as the �rst time that �rm i's value reaches its

default threshold level. Then Di(t), the event that �rm i defaults before some time t > 0,

can be expressed as: Di(t) = f�i � tg. Using the result of Harrison (1990), we have

P (Di(t)) = P (�i � t)

= 2 �N
�
� ln(Vi;0=Ki)

�i
p
t

�
: (2)

De�ne

Zi :=
ln(Vi;0=Ki)

�i

as the standardized distance of �rm i to its default point. Eq. (2) then is simpli�ed as:

P (Di(t)) = 2 �N
�
� Zip

t

�
: (3)

The default correlation between �rm 1 and �rm 2 over period [0; t] is:

�D(t) = Corr[D1(t);D2(t)]

=

P [D1(t) �D2(t)]� P [D1(t)] � P [D2(t)]

[P (D1(t))(1 � P (D1(t)))]1=2 � [P (D2(t))(1 � P (D2(t)))]1=2
: (4)

We know from basic probability theory that

P (D1 �D2) = P (D1) + P (D2)� P (D1 +D2): (5)

So given eq. (3), to determine the default correlation, the only remaining unknown we need

to solve is the P (D1 +D2), i.e., the probability that at least one default has occurred by

1This assumption makes it possible to remove the drift term from ln[e��itVi(t)].
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time t. We will show that

P (D1 +D2) = 1� 2r0p
2�t

� e�
r
2
0
4t �
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(6)

where I�(z) is the modi�ed Bessel function I with order � and Zi = bi=�i. As a matter of

fact, one can easily verify that:
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>>:
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�
�
p

1��2
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(8)

Mathematically, calculating the default correlation between the two �rms now reduces

to calculating the probability that at least one �rm's value reaches the threshold level during

time [0; t], i.e.,

P (D1 +D2) = P (�1 � t or �2 � t)

= P (� � t); (9)

where � := min(�1; �2).

De�ne

X1(t) = � ln[e��itV1(t)=V1(0)];

X2(t) = � ln[e��itV2(t)=V2(0)];

b1 = � ln[K1=V1(0)] = ln[V1(0)=K1];

b2 = � ln[K2=V2(0)] = ln[V2(0)=K2]:
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It is straightforward to verify that [X1(t); X2(t)] follows a two dimensional Brownian motion:

2
64 dX1

dX2

3
75 = �S

2
64 dz1

dz2

3
75 : (10)

After this transformation, �nding P (� � t) is equivalent to �nding the �rst passage time

of the two dimensional Brownian motion [X1; X2]
0
with initial condition [X1(0); X2(0)]

0
=

[0; 0]0 to a boundary consisting of two intersecting linesX1 = b1 and X2 = b2. For notational

convenience, this boundary will be denoted as @(b1; b2) henceforth.

Suppose that the two dimensional Brownian motion process [X1(t); X2(t)]
0
represents the

position of a particle at time t and that @(b1; b2) is a absorbing barrier. Let f(x1; x2; t) be the

transition probability density of the particle in the region f(x1; x2)jx1 < b1 and x2 < b2g,

i.e., the probability density that [X1(t);X2(t)]
0
= [x1; x2]

0
and that the particle does not

reach the barrier @(b1; b2) in time interval (0; t). We have

P (X1(s) < b1 and X2(s) < b2, for 0 < s < t; X1(t) < y1 and X2(t) < y2)

=

Z y1

�1

Z y2

�1

f(x1; x2; t)dx1dx2 := F (y1; y2; t): (11)

Thus F (b1; b2; t) is the probability that absorption has not yet occurred by time t, i.e.,

F (b1; b2; t) = P (� > t) = 1� P (� � t):

According to eq. (9), to estimate the joint probability of �rms 1 and 2 as well as the default

correlation between the two �rms, we only need to calculate F (b1; b2; t).

According to Cox and Miller (1965) and Karatzas and Shreve (1988), the transition

probability density f(x1; x2; t) satis�es the following Kolmogorov forward equation:

�21
2

@2f

@x21
+ ��1�2

@2f

@x1@x2
+

�22
2

@2f

@x22
=

@f

@t

(x1 < b1; x2 < b2); (12)

subject to certain boundary conditions.

Solving for the density function f from the above PDE and integrating, we obtain
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Main Result 1 The probability that no �rm has defaulted by time t is given by

F (b1; b2; t) = 1� P (D1 +D2)

=
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where I�(z) is the modi�ed Bessel function I with order � and

�0 =

8>><
>>:

tan
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p
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�
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� + tan
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�
otherwise,

(14)

r0 = b2=[�2 sin(�0)];

� =

8>><
>>:

tan
�1

�
�
p

1��2

�

�
if � < 0

� + tan
�1

�
�
p

1��2

�

�
otherwise.

(15)

All other notation is as previously de�ned.

It is obvious that the probability F (b1; b2; t) at any given time horizon t is solely deter-

mined by standardized distances to default Zi = bi=�i. As a matter of fact, one can easily

verify that:

�0 =

8>><
>>:

tan
�1

�
Z2
p

1��2

Z1��Z2

�
if (:) > 0

� + tan
�1

�
Z2
p

1��2

Z1��Z2

�
otherwise,

(16)

r0 = Z2= sin(�0):

The above result o�ers a very tractable closed-form formula to calculate default corre-

lations. Like the Black-Scholes model, this formula can be programmed into computers or

calculators and be used to report results instantaneously.
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2 How to Apply the Model in Practice

To apply the model in �nancial practice, we must estimate the following parameters: (Vi,

�i, Ki, �) or (Zi, �).

2.1 An Option Approach to Estimating Parameters

2.1.1 Estimating Vi, �i, and �

Typically, the total value of a �rm's underlying assets is not observable because the market

value of the �rm's liabilities is not known. In practice, this problem can be circumvented

by an option theoretic model of the �rm, which treats the �rm's equity as a call option on

the �rm's underlying assets. Denote Si as the equity value of the �rm, we have:

Si = C(Vi; �i; other values); (17)

where other values include the book value and the maturity of liabilities as well as the

interest rate. These \other" values are generally observable.

Rewrite eq. (17) as

ln(Si) = G(ln(Vi); �i; other values):

From Ito's lemma and eq. (1), we have

d ln(Si) = �i(:; t)dt+
@G

@ ln(Vi)
[si1; si2]

2
64 dz1

dz2

3
75 ; (18)

where �i(:; t) is a deterministic function of Vi, �i, etc. Eq. (18) implies that the volatility

of log equity return �s;i := Vart[d ln(Si)=dt] satis�es

�s;i =

@G

@ ln(Vi)
� �i

= H(Vi; �i; other values); (19)

Assume that we can observe stock price Si and equity return volatility �s;i. Solving the

joint equation system (17) and (19), we obtain Vi and �i. It follows from eq. (1) and eq.
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(18) that

� = Corrt[d ln(S1); d ln(S2)]:

Generally, �rm value correlations estimated over �nite horizons do not satisfy the above

equation. However, the equation could be a good approximation for highly rated �rms.

Whether the equation is also a good approximation for highly leveraged (lowly rated) �rms

is still an unsolved practical issue.

2.1.2 Estimating Ki

The default point Ki is determined by the liability structure of the �rm. It is the liabilities

the �rm must be able to meet by a chosen time horizon in order to stay in business.

In practice, the relationship between Ki and the liability structure is often assessed by

historical data. In the KMV Corporation's credit valuation model, the default point is

de�ned as short-term liabilities plus a certain percentage (approximately 50%) of long term

liabilities.

2.2 Statistical Approach to Estimating Parameters

One may also use a statistical approach to estimate Z. From equation (3), we know that one

can easily calculate Zi if one knows P (Di(t)) for some t. Suppose that we want to estimate

Z for the �rm XY Z which has A-rated senior debt. From the historical data, we know

the statistical cumulative default rates ~A(t) for such �rms at various investment horizons t.

The parameter Z can then be chosen to �t the theoretical default probabilities P (Z; t) to

the historical default rates ~A(t). One way to do this is with a least-squares approach:

Z = argmin
Z

X
t

 
P (Z; t)

t
�

~A(t)

t

!2

:

In the above expression, cumulative default rates P (Z; t) and ~A(t) are divided by time

horizon t so that they are transformed to average default rates per unit time.
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Comparing with the option approach, the statistical approach is easier to use. However,

because this approach is based solely on credit ratings, it does not e�ectively use all �rm-

speci�c information. In addition, since the default probability corresponding to a rating

category is time-varying, historical default rates for �rms in a given rating category may

not re
ect the true default probability of that rating category at any particular time.

3 Implications of the Model

In this section, we use numerical examples to investigate the implications of the model and

to examine if the formula presented in the above section is consistent with the important

empirical features of the historical default data.

Figure 1 plots the relationship between default correlation and investment horizon t as

well as the underlying asset return correlation �. This plot o�ers the following results.

1) The default correlation and the underlying asset return correlation have the same

sign. The higher is the underlying asset return correlation �, ceteris paribus, the higher is

the default correlation. Generally, the default correlation is lower than the underlying asset

return correlation.

This result is quite intuitive. For instance, if asset return correlation � is positive, when

one �rm defaults because of the drop in its value, it is likely that the value of the other �rm

has also declined and moved closer to its default boundary. The result may explain why

�rms in the same industry (region) often have higher default correlations than do the �rms

in di�erent industries (regions).

2) Default correlations are generally very small over short investment horizons. They

increase and then slowly decrease with time.

Over a short investment horizon, default correlations are low because quick defaults of

�rms are rare and are almost idiosyncratic. Default correlations eventually decrease with

time because over a su�ciently long time horizon, the default of a �rm is virtually inevitable
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and the non-default events become rare and idiosyncratic.
2
This result is consistent with an

important phenomenon of historical default correlations reported in Lucas (1995). Lucas

interprets this phenomenon as a result of business cycle 
uctuations. Our result suggests

that we do not need business cycle 
uctuations to explain this phenomenon.

Figure 2 illustrates the relationship between default correlation and the credit quality

of the �rms, proxied by initial V=K. Like Figure 1, this plot also contains some interesting

results.

1) The high credit quality of �rms not only generates a low default probability of each

�rm, but also implies a low default correlation between �rms for typical time horizons. The

intuition behind this result is similar to that behind the low default correlation over short

time horizon. For high credit quality �rms, the conditional default probability P (D2jD1) is

small because even though the default of �rm 1 signals that V2 may have moved downward

to the default boundary, it still has a long way to go to cause the default of �rm 2. This

result matches the well known empirical feature regarding the relationship between default

correlation and credit ratings.

2) The time to reach the peak default correlation depends on the credit quality of the

underlying �rms. Generally, the high quality �rms take a longer time to reach the peak.

This result is consistent with the empirical �nding of Lucas (1995) who thought that this

�nding was very puzzling. Now we know that this result is obtained because for high credit

quality �rms, it takes longer time for P (D1 �D2) to approach to P (D1) � P (D2).

3) Since the credit quality of �rms is time-varying, the default correlation which depends

on the credit quality is very dynamic.

The above results have many useful implications for credit analysis and risk manage-

ment. Some examples are listed as follows.

1) The default correlation over a short horizon is often very small. As a result, portfolio

2The correlation between D1 and D2 is the same as the correlation between 1�D1 and 1�D2.
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diversi�cation can be very bene�cial. However, diversifying the portfolio within an industry

or diversifying across di�erent industries has little impact on default risks.
3

2) For long term investments (e.g., �ve to ten years), the default correlation can be

quite a signi�cant factor if the underlying �rm values are highly correlated. In this case,

concentration in one industry or one region could be very dangerous. Diversi�cation across

di�erent regions or di�erent industries is very desirable.

3) The dynamic nature of default correlations requires the active risk management of

a portfolio. Consider a hypothetical loan portfolio which consists of two loans. Suppose

that the annual default probability for each loan was 1% and the annual default correlation

was 10% originally. Using the previous analysis, we know that the probability that both

loans would default in a year was about 0.11%. Assume that the credit standings of the two

loans have deteriorated recently so the annual default probability for each loan is now 2%.

If the default correlation did not change, the probability that both loans default in a year

would become 0.24%, about twice as large as the original probability. However, we know

that declines in credit quality will also lead to increases in the default correlation. If the

default correlation increases from 0.10 to 0.25, the joint probability of default will become

0.53%, �ve times as large as the original probability.

4) The dynamic nature of default correlations also provides some guidance for setting up

capital requirements. Since the change in individual default risk may substantially a�ect

the credit risk of a portfolio as shown above, the capital requirements must be adjusted

accordingly.

We now use the historical data to test the theoretical model to see if the model can

generate reasonable default correlations. The default data set here is obtained fromMoody's

default studies reported in Fons (1994). Using this data set, default correlations for various

rating categories are estimated and are compared with the empirical results of Lucas (1995).

3Of course, di�erent diversi�cation strategies may still have important e�ects on the risk of price changes.
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Table 1 reports cumulative default rates for 1 to 20 years for Moody's broad rating

categories adopted from Fons (1994). These estimates are derived from Moody's default

data covering the years 1970 through 1993.

Table 2 reports the standardized default distances Z derived from statistical default

data using the approach described in Subsection 4.2. As expected, a high credit rating

generally implies a high value of Z, or a long distance to default. The only exception is for

Aaa and Aa rating categories. Table 2 shows that Z is 9.28 for Aaa rated �rms and is 9.38

for Aa rated �rms. This abnormal �nding is mainly due to the statistical errors in default

rates data. As we can see from Table 1, statistical default rates for Aaa rated �rms are

constantly higher than those for Aa rated �rms after 15 years. Because of this anomaly, we

combine the two rating categories in the following default correlation analysis. We use Aa

to represent this combined rating category and use 9.30 as its Z-value.

The implied default correlations based on the Z-values in Table 2 are reported in Tables

3 through 7. These Tables show a similar pattern of default correlations to that reported in

Lucas (1995) over short to middle investment horizons. Default correlations for highly rated

�rms are virtually zero at the short to middle investment horizons, but default correlations

are pretty high for lowly rated �rms even for short investment horizons. However, we do

�nd some signi�cant di�erences between the calibrated correlations reported here and those

estimated default correlations in Fons (1994) for very long investment horizons, that is,

the calibrated default correlations over long investment horizons (say 10 years) for highly

rated �rms are substantially higher than those estimated by Lucas. There are several

potential explanations for these di�erences. One explanation is that the estimated long

horizon default correlations in Fons (1994) contain large estimation errors. As noted by

Fons himself, the �fteen overlapping time periods used in his study are possibly too short

for the ten-year statistics, so the historical statistics describe only observed phenomena, not

the true underlying correlation relationship. Another explanation is that Z and/or � used

in calibrations are not their true values. The inappropriate choice of parameters may have a
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larger e�ect on calibrated correlations for some time horizons than on calibrated correlations

for other horizons. Of course, it is also possible that the model itself is misspeci�ed so that

it cannot precisely estimate default correlations for certain kinds of �rms over long horizons.

But so far, we do not have evidence to prove that.

4 A Comparison with Merton-Style Model

Because of its simplicity, Merton's default model has been widely used by practitioners in

credit risk analysis. Merton assumes that a �rm has only one bond issue and can only

default at the maturity of the bond. This assumption makes it hard to use the original

Merton model to determine the default probability of a bond over any time horizon shorter

than its remaining maturity. To overcome this limitation, practitioners simply assume that

bond can only default at the end of any given time horizon. That is, to estimate the one-

year default probability of a bond, they assume that bond can only default at the end of

the year; to estimate the �ve-year default probability of a bond, they assume that default

may only occur at the end of the �fth year. Can this approach yield good approximations

for default correlations? We use some numerical simulations to answer this question.

Table 8 provides a comparison between default correlations implied by the Merton model

and the �rst-passage model with given Z-scores. According to Table 2, Z = 8 roughly

corresponds to A-rated �rms and Z = 3 corresponds to certain low grade �rms. Table

8 shows that the Merton approach generally underestimates default correlations. This is

because for any given Z, the Merton approach always underestimates default probability

because it only allows �rm to default at a given point in time.

According to Table 8, with Z's being low or time horizons in consideration being rela-

tively long, default correlations implied by the Merton approach are typically 20-30 percent

lower than those implied by the �rst-passage model. For instance, with Z = 3 and a two-

year investment horizon, the default correlation implied by the Merton approach is 9.6%,
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but the default correlation implied the �rst-passage approach is 12.2%. The two models

generate similar default correlations for high grade �rms over short time horizons. In this

case, default correlations are virtually zero anyway.

The J.P. Morgan's CreditMetrics uses observed default rates for various credit ratings

at a given time horizon (say one year) to back out Z-scores via the Merton model and

then uses these obtained Z-scores to estimate default correlations between any two credit

categories. This approach does not use �rm speci�c information and relies solely on rough

credit classi�cation data. In principle, the same strategy can also be applied to the �rst-

passage model. An interesting question is: How close are default correlations implied by

the two di�erent models? By answering this question, we may gain some insight about the

performance of Merton's model to estimate default correlations.

It is straightforward to verify that the default correlation obtained by the above approach

depends only on the default rate and the asset level correlation and not on the time horizon.

More speci�cally, for any given �, the default correlation over a one year horizon with a

10% yearly default rate is just the same as the default correlation over a �ve year horizon

with a 10% �ve-year cumulative default rate. For this reason, we just need to investigate

default correlations obtained by the two models under di�erent cumulative default rates.

Table 9 shows that for various default rates, the default correlations obtained by the

Merton approach are only slightly higher than those obtained by the �rst-passage model.

This is because on the one hand, the Merton model implies lower Z-scores and tends

to overestimate default correlations; on the other hand, the model ignores possible early

defaults and therefore tends to underestimate default correlations. The two e�ects o�set

each other and the net e�ect seems insigni�cant.

Interestingly, we �nd that the �rst-passage approach is even computationally more e�-

cient than the Merton approach in estimating default correlations. That is, the analytical

solution of the �rst-passage model is 8 to 10 times as e�cient as the Merton approach for

evaluating joint default probabilities and default correlations. This is mainly because the
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Merton approach involves the numerical evaluation of multiple in�nite integrals. For this

reason, the �rst-passage model could be a better choice even if one just wants to estimate

market-wide default correlations between various credit ratings.

5 Conclusion

This paper o�ers an analytical formula for calculating default correlations. Since the formula

can be implemented very easily, it provides a convenient tool for credit analysis. The result

of this paper also provides a theoretical justi�cation for many empirical results found in

the literature and increases our understanding about the important features of default

correlations.
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Appendix

The appendix provides proof for the main technical result.

Lemma 1 The density function f(x1; x2; t) satis�es:

f(b1; x2; t) = f(x1; b2; t) = 0:

Proof of Lemma 1: As an example, we just prove that f(b1; x2; t) = 0. The equality

f(x1; b2; t) = 0 can be proved in the same way.

Suppose to the contrary that for x1 2 (b1 ��x1; b1) we have

f(x1; x2; t) > � > 0; t1 � t � t2; x21 � x2 � x22:

Then for a small time interval (t; t +�t) contained in (t1; t2), the probability p(t)�t that

the particle is absorbed is approximately the probability that the particle is near b1 at time

t and that the increment in x1 carries the particle beyond b1. Certainly we have

p(t)�t � Prob[x1(t+�t)� x1(t) > �x1jx1(t) 2 (b1 ��x1; b1); x2(t) 2 (x21; x22)]

�Prob[x1(t) 2 (b1 ��x1; b1); x2(t) 2 (x21; x22)]

> �(x22 � x21)�x1 � Prob(x1(t+�t)� x1(t) > �x1): (20)

Denote p0 = Prob[x1(t+�t) � x1(t) > �1
p
�t]. Since x1(t +�t)� x1(t) � N(0; �21t),

we have p0 = 1�N(1) > 0. Hence if we take �x1 = �1
p
�t in equation (20), we have

p(t)�t > �(x22 � x21)p0�1
p
�t:

This implies that p(t) is in�nite for t 2 (t1; t2). But p(t) is in fact the probability density

of the �rst passage time to certain barriers, so we have a contradiction. That is, f(b1; x2; t)

must be zero. 2
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As a result, the transition probability density f(x1; x2; t) satis�es the PDE (eq. (12)):

�21
2

@2f

@x21
+ ��1�2

@2f

@x1@x2
+

�22
2

@2f

@x22
=

@f

@t

(x1 < b1; x2 < b2); (21)

subject to the following boundary conditions:

f(�1; x2; t) = f(x1;�1; t) = 0;

f(x1; x2; 0) = �(x1)�(x2);Z b1

�1

Z b2

�1

f(x1; x2; t)dx1dx2 � 1; t > 0;

f(b1; x2; t) = f(x1; b2; t) = 0: (22)

Theorem 1 The solution to P.D.E. (12) subject to conditions (22) is given by

f(x1; x2; t) =
2

�1�2
p
1� �2�t

e�
r
2
+r

2
0

2t

1X
n=1

sin

�
n��

�

�
sin

�
n��0

�

�
In�

�

�
rr0

t

�
; (23)

where

x1 = b1 � �1

�q
1� �2r cos(�) + �r sin(�)

�
;

x2 = b2 � �2r sin(�);

�0 =

8>><
>>:

tan
�1

�
b2�1

p
1��2

b1�2��b2�1

�
if (:) > 0

� + tan
�1

�
b2�1

p
1��2

b1�2��b2�1

�
otherwise,

(24)

r0 = b2=[�2 sin(�0)];

� =

8>><
>>:

tan
�1

�
�
p

1��2

�

�
if � < 0

� + tan
�1

�
�
p

1��2

�

�
otherwise.

(25)

Proof of Theorem 1: To solve PDE (12), we de�ne

u1 =
x1

�1
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and

u2 =
1p

1� �2

�
x2
�2

� �
x1

�1

�
:

Accordingly, we have

1

2

@2f

@u21
+

1

2

@2f

@u22
=

@f

@t
: (26)

The absorbing barriers are now the lines

u1 =
b1

�1
; u2 =

1p
1� �2

�
b2
�2

� �
u1

�1

�
;

which are generally not at right angles. The following transformations will put the inter-

section point of the barriers to the origin

v1 = u1 �
b1

�1

v2 = u2 �
1p

1� �2

�
b2
�2

� �
u1
�1

�
:

The rotation through angle

� = � + tan
�1

 
�p

1� �2

!

gives

w1 = �
q
1� �2v1 + �v2;

and

w2 = ��v1 �
q
1� �2v2:

Under these rigid transformations, P.D.E. (26) does not change form. The particle

now starts from some point [w1(0); w2(0)]
0
away from the origin and is absorbed at the

boundaries

w1 = 0; w2 = � �p
1� �2

w1:

Based on above transformations, we obtain:

x1 = b1 � �1(
q
1� �2w1 + �w2);

x2 = b2 � �2w2: (27)
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Letting

w1 = r cos(�)

w2 = r sin(�)

P.D.E. (26) becomes

1

r2
@2f

@�2
+

@2f

@r2
+

1

r

@f

@r
= 2

@f

@t
(28)

subject to boundary conditions:

f(r; 0; t) = f(r; �; t) = f(1; �; t) = 0;

f(r; �; 0) = �(r � r0)�(� � �0);Z �

�=0

Z
1

r=0
J � f(r; �; t)drd� � 1; t > 0; (29)

where

x1(r; �) = b1 � �1

�q
1� �2r cos(�) + �r sin(�)

�
;

x2(r; �) = b2 � �2r sin(�);

� =

8>><
>>:

tan
�1

�
�
p

1��2

�

�
if � < 0

� + tan
�1

�
�
p

1��2

�

�
otherwise,

(30)

and

J = r�1�2

q
1� �2

is the Jacobian of the overall transformation from (x1; x2) to (r; �).

Solving P.D.E. (28), we obtain
4
:

f =

2r

J � � � te
�

r
2
+r

2
0

2t

1X
n=1

sin

�
n��

�

�
sin

�
n��0

�

�
In�

�

�
rr0

t

�
: (31)

4The process for solving P.D.E. (28) is very lengthy and complicated. We omit this process because

the solution can be veri�ed without resorting to the solving process. Those readers who are interested in

knowing the process for solving this particular P.D.E. can contact us.
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Theorem 1 then follows immediately. 2

Proof of the Main Result: According to Theorem 1

F (b1; b2; t) =

Z b1

�1

Z b2

�1

f(x1; x2; t)dx1dx2

=

Z �

�=0

Z
1

r=0
J � f(r; �; t)d�dr

=

2

� � te
�

r
2
0
2t

1X
n=1

sin

�
n��0
�

�Z �

�=0
sin

�
n��

�

�
d�

Z
1

r=0
re�

r
2

2t In�
�

�
rr0
t

�
dr;

where J = r�1�2
p
1� �2 is the Jacobian of the transformation as de�ned before.

Using identities Z �

�=0

n�

�
sin(

n��

�
)d� = 1� (�1)n;

and Z
1

0

re�c1r
2

Iv(c2r)dr =
c2
8c1

s
c22
8c1

e
c
2
2

8c1

"
I 1
2
(v+1)

 
c22
8c1

!
+ I 1

2
(v�1)

 
c22
8c1

!#
;

one obtains the main result immediately. 2
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Figure 1: The Relationship between Default Correlation and the Correlation

at the Asset level. The parameter values used here are V1=K1 = V2=K2 = 1:8 and

�1 = �2 = 0:4.
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Figure 2: The Relationship between Default Correlation and the Credit Quality.

The parameter values used here are � = 0:4 and �1 = �2 = 0:4.

23



Table 1: Historical Cumulative Default Rates (%), 1970-93.

year Aaa Aa A Baa Ba B

1 0.00 0.02 0.01 0.16 1.79 8.31

2 0.00 0.04 0.09 0.51 4.38 14.85

3 0.00 0.08 0.28 0.91 6.92 20.38

4 0.04 0.20 0.46 1.46 9.41 24.78

5 0.12 0.32 0.62 1.97 11.85 28.38

6 0.22 0.43 0.83 2.46 13.78 31.88

7 0.33 0.52 1.06 3.09 15.33 34.32

8 0.45 0.64 1.31 3.75 16.75 36.71

9 0.58 0.76 1.61 4.39 18.14 38.38

10 0.73 0.91 1.96 4.96 19.48 39.96

11 0.90 1.09 2.30 5.56 20.84 41.08

12 1.09 1.29 2.65 6.19 22.22 41.74

13 1.30 1.51 2.99 6.77 23.54 42.45

14 1.55 1.76 3.29 7.44 24.52 43.04

15 1.84 1.76 3.62 8.16 25.46 43.70

16 2.18 1.76 3.95 8.91 26.43 44.43

17 2.38 1.89 4.26 9.69 27.29 45.27

18 2.63 2.05 4.58 10.45 28.06 45.58

19 2.63 2.24 4.96 11.07 28.88 45.58

20 2.63 2.48 5.23 11.70 29.76 45.58

Data Source: Fons (1994).
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Table 2: Z-values Implied by Historical Default Rates.

year Aaa Aa A Baa Ba B

1 9.28 9.38 8.06 6.46 3.73 2.10

Table 3: One Year Default Correlations (%).

Aa A Baa Ba B

Aa 0.00

A 0.00 0.00

Baa 0.00 0.00 0.00

Ba 0.00 0.00 0.01 1.32

B 0.00 0.00 0.00 2.47 12.46

Asset Level Correlation �=0.4.

Table 4: Two Year Default Correlations (%).

Aa A Baa Ba B

Aa 0.00

A 0.00 0.02

Baa 0.01 0.05 0.25

Ba 0.00 0.05 0.63 6.96

B 0.00 0.02 0.41 9.24 19.61

Asset Level Correlation �=0.4.
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Table 5: Three Year Default Correlations (%).

Aa A Baa Ba B

Aa 0.04

A 0.08 0.21

Baa 0.13 0.44 1.32

Ba 0.09 0.48 2.48 11.85

B 0.05 0.28 1.81 13.82 22.25

Asset Level Correlation �=0.4.

Table 6: Five Year Default Correlations (%).

Aa A Baa Ba B

Aa 0.59

A 0.92 1.65

Baa 1.24 2.60 5.01

Ba 1.05 2.74 7.20 17.56

B 0.65 1.88 5.67 18.43 24.01

Asset Level Correlation �=0.4.
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Table 7: Ten Year Default Correlations (%).

Aa A Baa Ba B

Aa 4.66

A 5.84 7.75

Baa 6.76 9.63 13.12

Ba 5.97 9.48 14.98 22.51

B 4.32 7.21 12.28 21.80 24.37

Asset Level Correlation �=0.4.

Table 8: Default Correlations (%) Implied by Di�erent Models

Z-Scores Are Given

(Z1; Z2) Model Time Horizon (Years)

1 2 3 4 5 10

(8,8) Merton 0.00 0.01 0.17 0.60 1.30 6.10

(8,8) Current 0.00 0.02 0.23 0.80 1.72 7.93

(3,3) Merton 3.25 9.61 13.6 16.2 17.9 21.7

(3,3) Current 4.29 12.2 16.8 19.5 21.1 24.0

Asset Level Correlation �=0.4.
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Table 9: Default Correlations (%) Implied by Di�erent Models

Default Rates Are Given

Model Default Rates (%)

0.1 0.5 1.0 5.0 10 20 40

Merton 2.85 5.77 7.74 14.58 18.50 22.63 25.86

Current 2.77 5.60 7.51 14.10 17.82 21.65 24.34

Asset Level Correlation �=0.4.
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